direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C23.6D6, C24.22D6, C23.20D12, C6⋊1(C23⋊C4), (S3×C23)⋊4C4, C22⋊C4⋊36D6, C23.22(C4×S3), (C22×C6).66D4, (C22×Dic3)⋊5C4, C22.14(C2×D12), C22.44(D6⋊C4), C23.81(C3⋊D4), (C23×C6).37C22, C23.82(C22×S3), C6.D4⋊42C22, (C22×C6).111C23, C3⋊2(C2×C23⋊C4), (C2×C3⋊D4)⋊3C4, C2.8(C2×D6⋊C4), (C2×C22⋊C4)⋊1S3, (C6×C22⋊C4)⋊1C2, C22.18(S3×C2×C4), (C22×S3)⋊2(C2×C4), (C2×Dic3)⋊2(C2×C4), (C2×C6).433(C2×D4), C6.35(C2×C22⋊C4), (C2×C6.D4)⋊1C2, (C2×C6).12(C22×C4), (C22×C6).52(C2×C4), (C22×C3⋊D4).1C2, C22.26(C2×C3⋊D4), (C2×C6).56(C22⋊C4), (C3×C22⋊C4)⋊44C22, (C2×C3⋊D4).83C22, SmallGroup(192,513)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C6 — C2×C6 — C22×C6 — C2×C3⋊D4 — C22×C3⋊D4 — C2×C23.6D6 |
Generators and relations for C2×C23.6D6
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=b, f2=bcd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, ece-1=fcf-1=cd=dc, de=ed, df=fd, fef-1=cde5 >
Subgroups: 680 in 210 conjugacy classes, 63 normal (41 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, D4, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C22×C4, C2×D4, C24, C24, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×S3, C22×C6, C22×C6, C23⋊C4, C2×C22⋊C4, C2×C22⋊C4, C22×D4, C6.D4, C6.D4, C3×C22⋊C4, C3×C22⋊C4, C22×Dic3, C22×Dic3, C2×C3⋊D4, C2×C3⋊D4, C22×C12, S3×C23, C23×C6, C2×C23⋊C4, C23.6D6, C2×C6.D4, C6×C22⋊C4, C22×C3⋊D4, C2×C23.6D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22⋊C4, C22×C4, C2×D4, C4×S3, D12, C3⋊D4, C22×S3, C23⋊C4, C2×C22⋊C4, D6⋊C4, S3×C2×C4, C2×D12, C2×C3⋊D4, C2×C23⋊C4, C23.6D6, C2×D6⋊C4, C2×C23.6D6
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 37)(9 38)(10 39)(11 40)(12 41)(13 32)(14 33)(15 34)(16 35)(17 36)(18 25)(19 26)(20 27)(21 28)(22 29)(23 30)(24 31)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 42)(2 28)(3 44)(4 30)(5 46)(6 32)(7 48)(8 34)(9 38)(10 36)(11 40)(12 26)(13 47)(14 33)(15 37)(16 35)(17 39)(18 25)(19 41)(20 27)(21 43)(22 29)(23 45)(24 31)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 13)(7 14)(8 15)(9 16)(10 17)(11 18)(12 19)(25 40)(26 41)(27 42)(28 43)(29 44)(30 45)(31 46)(32 47)(33 48)(34 37)(35 38)(36 39)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 47 33 12)(2 18 37 46)(3 30 35 17)(4 9 39 29)(5 43 25 8)(6 14 41 42)(7 26 27 13)(10 22 45 38)(11 34 31 21)(15 24 28 40)(16 36 44 23)(19 20 32 48)
G:=sub<Sym(48)| (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,37)(9,38)(10,39)(11,40)(12,41)(13,32)(14,33)(15,34)(16,35)(17,36)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,42)(2,28)(3,44)(4,30)(5,46)(6,32)(7,48)(8,34)(9,38)(10,36)(11,40)(12,26)(13,47)(14,33)(15,37)(16,35)(17,39)(18,25)(19,41)(20,27)(21,43)(22,29)(23,45)(24,31), (1,20)(2,21)(3,22)(4,23)(5,24)(6,13)(7,14)(8,15)(9,16)(10,17)(11,18)(12,19)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,37)(35,38)(36,39), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,47,33,12)(2,18,37,46)(3,30,35,17)(4,9,39,29)(5,43,25,8)(6,14,41,42)(7,26,27,13)(10,22,45,38)(11,34,31,21)(15,24,28,40)(16,36,44,23)(19,20,32,48)>;
G:=Group( (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,37)(9,38)(10,39)(11,40)(12,41)(13,32)(14,33)(15,34)(16,35)(17,36)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,42)(2,28)(3,44)(4,30)(5,46)(6,32)(7,48)(8,34)(9,38)(10,36)(11,40)(12,26)(13,47)(14,33)(15,37)(16,35)(17,39)(18,25)(19,41)(20,27)(21,43)(22,29)(23,45)(24,31), (1,20)(2,21)(3,22)(4,23)(5,24)(6,13)(7,14)(8,15)(9,16)(10,17)(11,18)(12,19)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,37)(35,38)(36,39), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,47,33,12)(2,18,37,46)(3,30,35,17)(4,9,39,29)(5,43,25,8)(6,14,41,42)(7,26,27,13)(10,22,45,38)(11,34,31,21)(15,24,28,40)(16,36,44,23)(19,20,32,48) );
G=PermutationGroup([[(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,37),(9,38),(10,39),(11,40),(12,41),(13,32),(14,33),(15,34),(16,35),(17,36),(18,25),(19,26),(20,27),(21,28),(22,29),(23,30),(24,31)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,42),(2,28),(3,44),(4,30),(5,46),(6,32),(7,48),(8,34),(9,38),(10,36),(11,40),(12,26),(13,47),(14,33),(15,37),(16,35),(17,39),(18,25),(19,41),(20,27),(21,43),(22,29),(23,45),(24,31)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,13),(7,14),(8,15),(9,16),(10,17),(11,18),(12,19),(25,40),(26,41),(27,42),(28,43),(29,44),(30,45),(31,46),(32,47),(33,48),(34,37),(35,38),(36,39)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,47,33,12),(2,18,37,46),(3,30,35,17),(4,9,39,29),(5,43,25,8),(6,14,41,42),(7,26,27,13),(10,22,45,38),(11,34,31,21),(15,24,28,40),(16,36,44,23),(19,20,32,48)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 6A | ··· | 6G | 6H | 6I | 6J | 6K | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 12 | 12 | 2 | 4 | 4 | 4 | 4 | 12 | ··· | 12 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | S3 | D4 | D6 | D6 | C4×S3 | D12 | C3⋊D4 | C23⋊C4 | C23.6D6 |
kernel | C2×C23.6D6 | C23.6D6 | C2×C6.D4 | C6×C22⋊C4 | C22×C3⋊D4 | C22×Dic3 | C2×C3⋊D4 | S3×C23 | C2×C22⋊C4 | C22×C6 | C22⋊C4 | C24 | C23 | C23 | C23 | C6 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 2 | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 4 | 4 | 2 | 4 |
Matrix representation of C2×C23.6D6 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 4 | 0 | 0 |
0 | 0 | 9 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 4 |
0 | 0 | 0 | 0 | 9 | 11 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 12 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 9 | 11 | 0 | 0 |
0 | 0 | 2 | 11 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 11 | 2 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,9,0,0,0,0,4,11,0,0,0,0,0,0,2,9,0,0,0,0,4,11],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,1,0,0,0,0,12,0,0,0,0,0,0,0,0,0,9,2,0,0,0,0,11,11,0,0,0,12,0,0,0,0,1,12,0,0],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,0,11,4,0,0,0,0,2,2,0,0,12,0,0,0,0,0,12,1,0,0] >;
C2×C23.6D6 in GAP, Magma, Sage, TeX
C_2\times C_2^3._6D_6
% in TeX
G:=Group("C2xC2^3.6D6");
// GroupNames label
G:=SmallGroup(192,513);
// by ID
G=gap.SmallGroup(192,513);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,422,58,1123,438,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=b,f^2=b*c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,e*c*e^-1=f*c*f^-1=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^5>;
// generators/relations